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A Stable Finite Element Method for
Initial-Boundary Value Problems for
First-Order Hyperbolic Systems

By Ragnar Winther*

Abstract. A nonstandard finite element method for initial-boundary value problems for
first-order hyperbolic systems in one space dimension with general boundary conditions is
analyzed. The method can be considered as a generalization of the box scheme. We first
establish a stability result for the method and then derive several error estimates.

1. Introduction. The purpose of this paper is to study a finite element method for
the first-order system

u(x, t) + A(x)u(x, t) + B(x)u(x, t) = f(x, 1),
(1.1) Kou(0, 1) = go(2), Kyu(l, 1) = g,(2),

u(x, 0) = ue(x),
for(x,t) € I X J =0, 1] X [0, t*], where t* > 0.

Here A(x) and B(x) are n X n matrices. We assume that 4(x) has n real
eigenvalues, A((x) > Ay(x) > - - - > A, (x), and that there exist a constant 7, > 0
and an integer m, 0 < m < n, such that
(1.2) “Ape1(x) A (x) > 1, forallx € I

Furthermore, we assume that for each x € I there is a nonsingular matrix Q(x)
such that

4 =0A07,
where A = diag(A,, A,, . . ., A,), and that there exists a constant 7, such that

(1.3) [Q(X)|, |@7'(x)| <7, forallx € I,

where | - | denotes the Euclidean matrix norm.

If y(x), y5(x%), . . ., ¥,(x) are eigenvectors of A(x), corresponding to the eigenval-
ues A(x), Ay (x), ..., \,(x), we let E*(x) and E(x) denote the positive and
negative eigenspace, respectively; i.e.,

E+(x) = Span{yl(x)’yZ(x)’ e ’ym(x)}

and

E_(X) = span{ym+l(x)’ym+2(x)’ LR ,y,,(x)}.
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66 RAGNAR WINTHER

The matrices K; and K, in (1.1) are assumed to be independent of ¢ and of
dimension m X n and (n — m) X n, respectively, and they are assumed to satisfy
the condition
(14) ker(Ky) N E*(0) = {0} and ker(K,) n E~(1) = {0}.
The data in (1.1) are assumed to be given such that u, € (LX(1))", g, € (LA(J))™,
g, € (LAJ))"™ ™, and f € (L*(I X J))". Throughout this paper we shall also as-
sume that B € (C(1))"*" and Q, A, A € (COI))**".

Now let v(x, £) = Q '(x)u(x, t). It then follows from (1.4) that there exists
matrices Spg, g1, 510 and S, ; of dimension m X (n — m), m X m, (n — m) X m,
and (n — m) X (n — m), respectively, such that v satisfies the diagonal system

v,(x, 1) + A(x)o,(x, 1) + B(x)o(x, ) = Q' (x)f(x, 1),

07(0, 1) = So007(0, 1) + Sy, 80(2),

v (L, 1) = S 0" (L, 0) + Sy,8(),

o(x, 0) = vy(x),

where vy = Q 'y, B= Q'BQ — AQ™),0, and v* €C” and v =€ C*~" are

(U)

It is also well known (see, for example, Thomée [11]) that the system (1.1) has a
unique solution ¥ € C(0, ¢*; L*(I)"), under the conditions given above, and that
there exists a constant ¢, independent of u,, g,, g;, and f, such that

(1.5)

(1.6) sup lu(:, Ol 2y < c{lltoll 2y + 1 8oll 2y + 1181l 22y + 11l L2a <y }-
o<r<*

Finite difference methods for general mixed hyperbolic systems of the form (1.1)
have been intensively studied (see, for example, Kreiss [8] and Gustafsson, Kreiss,
and Sundstrom [7]), but very little theoretical work has been done in the direction
of applying finite element methods to such problems. The reason for this is
probably that the standard Galerkin method does not yield optimal error estimates
when it is applied to first-order hyperbolic equations (see Dupont [5]) and that this
method requires special care in order to treat the boundary conditions in (1.1); (see
Gunzburger [6]).

The goal of this paper is to prove a stability result similar to (1.6) for a
nonstandard finite element method for (1.1) and then use this to derive error
estimates for the method. The finite element method, which will be precisely
defined in Section 3, consists of using continuous trial functions and discontinuous
test functions (both in space and time). The treatment of the boundary conditions
in this method is straightforward and can be considered as a generalization of the
so-called box scheme. The box scheme was analyzed for problems of the form (1.5)
by Thomée [10] and for certain nonlinear problems by Luskin [9]. The method
considered here is also closely related to a finite element method analyzed by the
author [13] for the nonlinear Korteweg-de Vries equation and it can (except for the
treatment of the boundary conditions) be considered as a dual method of the
(semidiscrete) method studied for one first-order hyperbolic equation by Baker [2].
The time-stepping part of our method is closely related to discretization in time by
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collocation, which was studied for parabolic equations by Douglas and Dupont [4].

Some local properties of the method are derived in Section 4 and the stability
estimate is proved in Section 5. L?-error estimates are given in Section 6 and some
superconvergence results are derived in Section 7.

2. Notation. We shall use { -, -) to denote the dot product on C”, and | - | will
denote the associated vector and matrix norm. If w € C”, then we write

w=("")
w
where w* € C” and w~€ C"~ ™. Occasionally, we shall also use w* to denote the

vector (w(;) € C”, and similarly for w™. In the same way, we write the diagonal
matrix A in the block form

A* 0
A= .
X
For an arbitrary Banach space X, we let || - ||, denote the norm on X, and, if
j = lis an integer, then || - ||y also denotes the norm on X”.

For any integer » > 0, H”(I) denotes the Sobolev space of functions on I with »
derivatives in L*(1), and, if » < 0, then H*(I) is the dual of H(I) with respect to
the inner product on L*(I). For precise definitions we refer to [1]. We shall
frequently use the notation

-l =W llg-ay and JI- |l =1 "llo
Also, if v, », > 0 are integers and ¢ € C*®(I X J), define
o}, = 2 2

22| ()

We let H*»*2(I X J) be the completion of C*(/ X J) in this norm.
Throughout this paper, ¢ will denote a generic constant, not necessarily the same
at different occurrences.

4 V2

z(li)'

3. The Finite Element Method. In this section we shall describe our finite element
method for the equation (1.1). For any integer r > 1, let P, denote the set of
polynomials of degree < r. Let A be a family of partitions of I; i.e., if § € A, then
8 = {x;},, where

O=x<x, < "+ <xpy=1
We shall use the notation I, = (x;_,, x,), h; = x; —

1

Forintegersr > land -1 <» <r — 1, deflne

X;_yand h = max; ;< A

Ss(r, v) = {x € C(")(I)[xl eP,1<i< M}

where CC(I) denotes the set of piecewise continuous functions on 1. Observe that
the spaces S;(r, ») have the approximation property that, for any integer j,
v + 1 < j < r, there is a constant ¢ > 0 such that

v+1

3.1 inf h' ; < ch ,
3.0 et 3 Hlle =Xl < kol

for all p € H/(I).
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Similarly, let I' be a family of partitions of J. If y = {1}, €T, we let
Ji=Q_pt)k=1t—t_,and k = max, .y k;, and, if s > land -1 <» <s —
1, then the spaces S, (s, ») are defined in the same way as above.

We shall be interested in partitions (8, y) belonging to a subset  of A X I'. We
assume that there is a constant 7, > 1 such that, for all (§, y) € @,

3.2) < kj/h <7y 1<i<M1<j<N.
For the rest of this paper, we let r and s be fixed integers > lsuch thats <r + 1.
For each (8,7) €8, we let My = Ss(r +1,0), M, = S(s +1,0), N, =
Ss(r, —1), and I, = S (s, —1). Observe that it follows from (3 2) that there is a
constant ¢ > 0 such that forallx € Mz and 0 < j <,

M 5

ch” lell,

(33) 2 lIxll gy < { .

ey ck||x,

and similar inverse properties holds for the other spaces above.
Adopting a tensor product notation, we define

%8"Y = @TL& ® G_)R_,_Y and %8,7 = %8 ® %.
Observe that if U € M., then U,, € N;, . We shall let Py, P,, and P, be the
L*-projections onto the spaces 9, 9, and 9, respectively. Since the spaces I,

and 9, are discontinuous spaces, it follows that all the projections above are
completely local. Hence, if a € CV(I) is fixed, then since

ax — Py(ax) = (a — Psa)x + (I — P;)((Psa)x) — Ps((a — Psa)x)
it follows by inverse properties that there is a constant ¢ such that, for all x € 9,

(34 llax — Ps(ax)|l < chl|x]|.

A similar property holds for the projection P,.
Our finite element method for the equation (1.1) consists of finding U € I3,
such that

*rl
fo'fo<U,+AUx+BU—f,x>dxdt=o, for x € 9,

(3 VKU 1) = G0, K UL, 1) = Gy(0),
U(x, 0) = Uy(x).

Here U, € Mz, G, € M, and G, € M7~ will be chosen as approximations of
uy, 8o and g, respectively, and we always assume that K U, (0) = G,(0) and
K,U(1) = G,(0). We note that

dim(9M5 ) = n(Mr + 1)(Ns + 1), dim(93,) = nMrNs,
and that the initial and boundary conditions in (3.5) represent n(Mr + Ns + 1)
linear equations. We also observe that the method (3.5) is a time-stepping method
in the sense that U|, can be computed from U(-, t;_,), G| 5 Gl s and fl s In fact,

if weletr =s=1andif 4 and B are independent of x, then the method (3.5) is
equivalent to the box scheme.

4. Local Properties. In this section we derive some preliminary results that will be
needed in Section 5 in order to prove stability of the method. We first prove a local
property for the method when it is applied to a single equation with a constant
coefficient.



INITIAL-BOUNDARY VALUE PROBLEMS 69

LEMMA 4.1. Let r and s be integers such that r,s > lands <r + landleta + 0
be a real number. Assume that U € P, , ® P, | such that

4.1) Ux,00=U(x,1)=0
and
1,1
(4.2) f f(U,+EUX)xdxdt=0 forx P, QP,.
0 7o
Then U = 0.

Proof. Forj=0,1,...,s — 1,definea; €P,,, by
1 .
= J

a;(x) fo U(x, t)¥ dt.

Also let a_; = 0. It follows from (4.1), (4.2) and integration by parts that, for any
qEP,

5./(;lajf(x)q(x) dx = 5./(;1'[(;1Ux(x, )¢ dtq(x) dx
—flflU,(x, 0 dig(x) dx
oo

1,1 )
. j—1
Jfo fo U(x, )¢~ dig(x) dx

or
Ej;lajf(x)q(x) dx =jj(;1aj_l(x)q(x) dx,

forj=0,1,...,s — 1. Therefore, since a_, = 0, we obtain that

(4.3) ae) = ja;_y, Jj=01...,s—1,
and
(4.4) o EP,, j=01...,5s -1

Now let { p;}i-o C P, be such that
U(x, 1) = X p(1)x".
i=0
Then
o) = 3 <[ p0r di

i=0 0

and therefore (4.4) implies that
1 .
(4.5) f p(Pdt =0, j=0,1,..., min(,s) — 1.
0

For each integer j > 0, let L;(¢) be the Legendre polynomial of degree j on [0, 1]
such that L;(0) = 1. Note that this implies that L(1) = (-1. We now wish to show
that p, =0 for i =0, 1,..., r. We first note that if i > s, then (4.5) implies that
pi(8) = 3G L(¢), where ¥, is a constant. Since p,(0) = 0, this implies that p, = 0.
Also note that we obtain from (4.5) that

Peo1(t) = I, L,_y(0) + I, Ly(2),

for suitable constants J(,_, and ‘st_l. But, since p;_,(0) = p,_,(1) = 0 and Ly(1)
= (~1YL,0), this implies that p,_, = 0.
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We now prove that p; =0 for 0 <i < s — 1 by induction. Assume i, is an
integer such that 0 <i, <s — 1 and P;, = 0. From (4.3) and (4.4) we obtain that,
for0 < j<s-—1,

I . il ol .
i x'f p(OY tdt=a (i + l)x'f P (D) db,
i=0 0 i=0 0
or
1 . 1 )
jf p()FVadt = a(i + 1)] POV dt,
0 0
fori =0,1,...,j— 1. Therefore, since pi, =0, we have
1 .
[Py dt =0, j=iy=lLip...,5-2.
0
Also note that (4.5) implies that
l R .
fp,-o_l(t)tf dt=0, j=01,...,0—2
0

Hence, there exist constants J(; _, and ETC,.O_, such that
Pip—1() = 3G, 1 L_y(1) + 3G, _ Ly(2),
and as above this implies that p; _; = 0. This completes the induction argument

and hence U =0. [
Let0=§, < £ < --- <§ = 1beapartition of I and let

§i=x+§h forl <i<MO<j<r
For any function ¢ € C(I), define Ryp € 9N, by interpolating ¢ at the points
{&,); ie,

(Rs®)(&)) = (&) for1 <i<M,0<j<r
We observe that the operator Ry is defined locally on each subinterval 7. Hence,
since ap — Rs(ap) = (a — Rsa)p + (I — Ry)((Rsa)e), it follows, from (3.3) and
standard error estimates for polynomial interpolation, that if @ € C(I), then
there is a constant ¢, depending on a, such that, for any ¢ € I,

(4.6) llap — Ry(ap)ll + hllap — Ry(ag)ll; < chlle|.
The operator Ry will now be used to diagonalize the system (3.5). Assume that
U € 93, is a solution of (3.5) and define V' € I3, by

(4.7) V =Ry (Q7'V),

for all # € J. We note that (4.6) implies that there is a constant ¢ > 1 such that, for
h sufficiently small,

(4.8) NVE DI < UG, DI < el VE, Dl

forallt € J.
Now observe that (3.5) implies that

foﬂfOl<Q{(Q“U), + AQ'V), + B(Q™U)} - f, x> dx dt = 0,

for all x € 95, where B is defined in Section 1. Hence, it follows from (4.6) that,
forall x € 9,

(4.9) [ [ Qv+ AV, + BV + @) - x> drdi =0,
0 0
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where w, satisfies
(4.10) ”‘00“1_2(1 xJ) S C|[V“L2(1 xJ,)

for1 <i < M,1 < j <N, and some constant ¢ independent of V.
Define now w, € 93, by

fot‘f;(wl, P,Q*x)> dx dt

(4.11) . i
=_f f<V’+AVX+BV+‘*’0’(P5_I)Q*x}dxdt,
o Jo

for all x € 9G,. By (3.3), (3.4), and (4.10), we obtain that w, is uniquely defined
for A sufficiently small and there is a constant ¢ such that

(4.12) loill 2er,xay < €Vl 2axsy 1 <i<M, 1 <j<N.

Also note that it follows from (3.4) that PsQ maps 91; onto 95, for A sufficiently
small. Let (P;Q)"' denote (P5Qloy )" and define f € N, by f=(P;Q)'Pf.
Then there is a constant ¢ such that, for h sufficiently small,

(4.13) 172 xgy < elfllzxsy 1 <i<M,1<j<N.
If we let w = wy + wy, it follows from (4.9) and (4.11) that V satisfies the equation

*rl ~ ~
f'f<V,+AVX+BV+w—f,P8Q*x>dxdt=O,
0 0

for all x € 93 ,, and by (4.10) and (4.12)
(4.14) loll 2z xsy < ellV Il pgxsy 1 <i<M,1<j<N,

where the constant ¢ is independent of V. Finally, we note as above that, for A
sufficiently small, P;Q* maps 905, onto 903, and hence in this case V solves the
following discrete analog of (1.5).

fot‘fOI<V, +AV, + BV +w—fix)dedt =0 foryxe€ N,
(4.15) V0, 8) = SooV (0, 1) + So,,Go(2),

V-(1,0) = S,o,V*(1, 1) + §,,G(2),

V(x,0) = Vo(x),  where Vy = Ry(Q7'U,).

The following result is now a consequence of Lemma 4.1.

LEMMA 4.2. Assume that U € Mg, is a solution of (3.5) and let V be defined by
(4.7). Then there is a constant ¢ such that for h sufficiently smalland 1 < j < N,

IVIZaaxsy < ek {IVE DI + IVC, )IP + Kl fll <)
) Proo.t. Let i and j be fixed integers such that 1 <i < M and 1 < j < N. Define
Vandfin (P,,, ® P, ,)" by
V(x,t) = V(x;_, + xh, Ly + tk)
and
fx, 0) = fx;_y + xh, t,_, + tk)),
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for (x, 1) € R% and let A = A(x;). Then V satisfies the equation
YU e v 5 Rp s ke = ki x) dxdi=0
[ (7350 150 < i) -
for all x € (P, ® P,)", where & ( 17) depends linearly on V and by (3.3) and (4.14)

1M 2 xry < el VIl 2y
Here the constant ¢ is independent of V and k;. Hence, it follows from Lemma 4.1
and (3.2) that there is a constant ¢ such that, for k; sufficiently small,

IV 2%y < {1V O + VG, DI + K222 %1y}

or

I V||3_2(1,><J,) < ij{” 4G 5’—1)”2 + |V(s '})”2 + kj||f~||12}(1,x1,)}~
The desired result now follows by summation from i = 1 to i = M and by (4.13).

O

5. L2-Stability. The purpose of this section is to prove an estimate similar to (1.6)
for the method (3.5). The result below will be obtained by combining the local
results from the previous section with a generalization of an argument used by
Thomée [10] in order to prove stability of the box scheme.

THEOREM 5.1. Assume that U € G is a solution of (3.5). Then there is a
constant ¢ independent of U, such that, for h sufficiently small,

max || U(, t)|| < c{||Uoll + IGoll 2y + 1Gill 2y + 11 flloo)-
tey

Before we prove the result above we note that, since (3.5) is a system of linear
equations with as many equations as unknowns, the following corollary follows
directly from Theorem 5.1.

COROLLARY 5.2. The system (3.5) has a unique solution U € I _, for h sufficiently
small.

Proof of Theorem 5.1. First observe that because of (4.8) it is enough to show that
(5.1) max || V(-, )|l < e{[[¥oll + Goll 2wy + 1Gill 2y + 1 flloo)»

tey

for some constant ¢ independent of V, where V is defined by (4.7).
Now let ¢ € (0, 1) be fixed, where the value of & will be chosen later. Define two
piecewise constant functionsd * and d~ on I by

d*(x)=(1—¢e)x;_,+¢ forxel,
and
d(x)=1—(1 —-¢€)x,_, forxel.
Observe that
(5.2) d*(x+) —d*(x-) =d(x-) —d(x;+) = (1 - e)h,
Let D be the n X n matrix given by
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where D* = diag(d*,d*,...,d"*) and D™= diag(d~,d", ..., d") are matrices
of dimension m X m and (n — m) X (n — m), respectively. We note that
(5.3) I>D >l

We now prove the estimate (5.1) by energy arguments. For an integer j, 1 < j < N,
let x € 95, be given by

(%, 1) = { D(P;. V) (x,t) iftE€J,
0 otherwise.
By using x as a test function in (4.15), we obtain
1 ~ ~
(5.4) f”f<V,+AVX+BV+w—f,D(P8’yV)>dxdt=O.
5-170

First observe that, since for each x € I, V(x, -) € ‘31,’7', we have that

i 1/2 2
ff<V,,D(Ps,V)>dxdt 2), @IP BV

= _{”Dl/z(Ps G )IP = 11D VA(PV)(C, )17}
2
Also note that, by (4.13), (4.14), and (5.3), we obtain
T ~
f J BV + @ = [, D(Ps, V) dxdi < {11V Iy + I}
L1

where the constant ¢ is independent of V. Let A be the piecewise constant matrix
on I given by A(x) = A(x;) for x € I.. Then there is a constant ¢ such that

[ [f«a - Ryv,, D(Py, V) dx dr
5170

< ch|| Vil rax )l Vil 2=y < cll V||12}(1><Jj),

where we have used the inverse property (3.3). Finally, we obtain from (5.2) that,
forany s € J,

ft,ti.fola , D(Py, V) dx dt = f f (DK(P,V), P,V dx dt

§ (<DA(P,V), P,V y(x,~, 1) = (DA(P,V), P,V )(x,_ 1+, 1)} dt

0| =

Nl

f, {(1 = A ()2, V)" (1, )P — el(A*(x)))/*(P,¥)* (0, 1)

+ (1= e)l(-A(x) %P, V) (0, )2 = el(-A~(1)*(P,¥) (1, 0} dr
M—1
T2 RIPV(x, D) dr.
4y i=1
Since there is a constant ¢ such that
2 h|P,V(x, D dt < 2 hf" |V(x,, 1) dt

L1 i=1

<cf V”Ll(lle),
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it therefore follows from (5.4) and the estimates above that there is a constant ¢
such that

1D VAPV, )IP = 1D VAPV, 4 )IP
4 (1= o {IAT ) AE, 1) (1, i,
+[I(=A7(0)'2(P, V) (0, )32 )
—e{II(A* @) X(P, V)" (0, iZzwy
+I(=A() (V) (1, iy )
< {1V Ny + 1 E2axs)-

(5.5)

In order to obtain control over the full L?>-norm of V(-, 1), we need to apply one
other test function in (4.15). First let I be the n X n matrix given by

= _[I1* 0
I=
o
where I+ and I~ are the identity matrices of dimension m X m and (n — m) X
(n — m), respectively, and let A = I A. By using the function

x(x, 1) = { IDV, (x,t) ift € J,
0 otherwise,
as a test function in (4.15), we obtain

(5.6) K f01<V,+AVx+§V+w-f”,iDVx,>dxdt=o.
5-1

We observe that

t; 1 ~ 1 4 d « 1/2 2
T KAV,, IDV, > dx dt = 5 |7 —|(AD)"*V,|? dt
ffo<  IDV,> 2, @AD"V

1 - -
S (IADY2V,( )2 = IAD) V(- 5 )IP)-
Also, by (3.3), (4.13), (4.14), and (5.3),
5 (Y5 ;= B
[ fo BV + o~ f,0DV,)> dx dt < ch(|V | 2axsy + 1 F1 2 <)
=1

where the constant ¢ is independent of V. In the same way as above, we also obtain
from (5.2) that there is a constant ¢ such that, for any ¢ € J,,

1 - 1 rt d
S Vo iDLy dx =5 [ (D) 2V, (s OF = (D7) 2V (x, ) dx
1
> {1 =9IV (L )P - ¥, 0, f

+ (1= IV, (0, ) — e[V, (1, )P}
=V, )l
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From (5.6) and the estimates above, we derive that there is a constant ¢ such that
IAD) 2V (-, )IP = IAD) 2V, (. 4, )IP
+ (1= {1V (L iy + 1770, iz }

(5.7) _
—e{IV,* (0, Fagy + 1V (L iy )
< k(I V1 Zaaxay + 111 Faaxay)-
Define now a new norm, ||| - |||s on 913, by
IWII5 = 1D W)I? + KIAD) 2 W, |1
We note that it follows from (3.3) and (5.3) that, for & sufficiently small, || - |||, is
uniformly equivalent to || - || on 9. If we add (5.5) and A? times (5.7) and use the

boundary conditions in (4.15), then we obtain, by choosing e sufficiently small,
e = &(Sg0 Sy M), that

VG I3 = NVC 5o )IB
<c{IVIZaxsy + 1Goll2awy + 1Gill2ay + (1132xa )

where the constant ¢ is independent of V. Hence, it follows from Lemma 4.2 that
there is a constant ¢ such that, for 4 sufficiently small,

NVC I < (1 + ck)IIVC, 5 )G

+e{l1Gollauy + 1Gili3xy + 112y }-

Since (5.8) holds for j =1,2,..., N, (5.1) follows by the discrete analog of
Gronwall’s lemma. []

6. L>-Convergence. In this section we shall use Theorem 5.1 to prove LZ-error
estimates for the method (3.5). These estimates will be derived under certain
smoothness assumptions on the solution u of (1.1), and hence the data in (1.1) has
to satisfy certain compatibility conditions at r = 0. We shall, particularly, in the
rest of this paper assume that K,uy(0) = g,(0) and K uy(1) = g,(0) and that
Q’ A,A e (C(r+1)(1))nxn'

LEMMA 6.1. Assume that W € O is such that W(0) = 0 and
f01<A W, + QA(Q™),W, x> dx = 0,
Sor all x € OG. Then, for h sufficiently small, W = 0.
PROOF. Since 4 = QAQ ™', we have, for any x € 9%, that

[ (@ W), 0% ax =o.
Therefore, since (Q 'W)*(0) = 0, there is a constant ¢ > 0 such that
@ W) IR < [1A(Q W) (QW)T
= int [AQ W), (Q7W)] ~ Q% dx

< IAQ@7'W), |l inf [(Q7'W)) — @*xII.
x € G
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Note that, by (1.3), (3.1), and (3.3), there is a constant ¢ such that

inf [(Q7'W); — @*x|l = inf [Q*((@%)7'(Q7'W); - X)I
X E NG X E NG

M
<ch 2 hNION QW) S vy

i=1
< ch|W|;.
Hence, we have
Q"W)™ I} < ch| W3

A similar result holds for (Q "'W)", and therefore there is a constant c, independent
of W, such that

QW < chllQ7'W|,.
This implies the desired result. []
Define Ty: (H '(1))" — 9% by (Tsw)(0) = w(0) and
1
J, <AGw = (Tyw),) + QAQ),(w = Tyw), x> dx = 0,

for x € 95. We note that it follows from Lemma 6.1 that Tyw € I is well-
defined for A sufficiently small.
For any integer » > 0, let H”(8) denote the piecewise Sobolev space given by
H*(8) = {w € LX(I)|w, € H'(I),1 <i <M},

and let ||| - |||, s be the associated norm; i.e.,

M
2 2
wis = 25 11wl Zery-
i=1

If » < 0 is an integer, then we define H*(§) by duality with respect to the inner
product on L2(I); i.e., H*(8) is the completion of L%(I) in the norm
[iwe dx
will, 5 = T

Ox=pe H™(8) |||‘P|||_y,5
In the same way as above we define the spaces H*(y), with norms ||| - ||,
consisting of functions defined on J. We observe that if w € H”(§) for some » < 0,
thenw € H”(I) and ||w||, < [[|w]]],s-

The following error estimate for the “projection” Ty now follows by a standard
duality argument.

LEMMA 6.2. There is a constant c¢ such that, if h is sufficiently small and
w € (H™ D)y, ‘

llw = Tywllls < ch™** w4y for-1<» <r-—1

Proof. Let £ = w — Tgw. It follows from the definition of Tyw that, for any
x € N3,

(6.1) f (A(Q18),, 0*x) dx = 0.
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Assume that v is an integer such that 0 < » < r — 1 and let n € (H”(§))". Define
Y € (H"*'(8))" by

(AY),=m and (1) =0.
Note that there is a constant ¢, independent of 5, such that

(6.2) il + 18 < cllinlll,,s-
From (3.1) and (6.1), we now obtain that

[ g m ax = [0 (A9),) dx

0 0
. 1 -1 *y, _
_x'él&sfo@(Q £, 0*x — ¥ dx
<A (278N, 416

Hence, it follows from (1.3) and (6.2) that

(6.3) IEN,.s < ch”* &, for0<» <r— 1.

The proof will be completed by showing the desired result for » = —1.
By (1.3), (3.1), and (6.1), we obtain that there is a constant ¢ > 0 such that

210279 1 < [ <A@, (219> dx
0
= il [A(Q19). (@ W) — Q%) d
+ inf [CA(Q 719, 0%, — (Q7(Tyw))] > dx
x2€N3 70

< ch7 &L IIwl e + I TswIs )
Observe that if we choose x € 903 such that

2 Wlllw = xllljs < ch|Iwll,»
j=0
then it follows from (3.3) that
M Tswllls < llixll,s + M Tsw — x5
< x5 + A"~ PflIw — xllls + 111}
<c{liwll, + A7 Dg),
Hence, it follows from the above that there is a constant ¢ such that

I(Q ') I < clig (A Iwll, 1 + AIIEIL)-

By a similar argument we obtain an analog estimate for (Q ~'£)” and therefore there
is a constant ¢ such that

IQ €I} < cliEl (A Wl 4y + AIEIL)-
Note also that it follows from (6.3) that

€l = 12Q "¢l < e(I1Q "¢l + 11£1) < c(1Q7"élly + AliElL)-

Hence, there is a constant ¢ such that

€ll; < ch"[wll, 41
for h sufficiently small. Together with (6.3) this implies the desired result. []
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The following superconvergence result for the operator T5 now follows directly
from the result above.

LEMMA 6.3. There is a constant ¢ such that, if h is sufficiently small and
w € (H™ (D),

max |w(x) = (Tpw)(X)| < k™ W],
PRrOOF. For a fixed x € 8, define G(X, -) € (L¥(1))" by

-1 . —
G(%, x); = { (W) ifx <%
0 otherwise.
Observe that for any ¢ € (H'(1))", such that (0) = 0, we have
— 1 —
¥(®) = [ (Av, G(E, x)) dx.

Therefore, since G(x, -) € H"~'(8), it follows from Lemma 6.2 that
#(®) = ()@ =| [ Aw, = (Tyw),), G(F, x)> dx
<ch|wll,4- O
Similar to the operator Ty, define 7. : (H D) S My by (T,9)(0) = ¢(0) and
j(;t‘<q3, —(T,9),,n)dt =0 forp € AN
It is easy to see that T, € N7 is well-defined, and, by using arguments similar to

the ones given in the proofs of Lemmas 6.2 and 6.3, we obtain that there is a
constant ¢ such that, for k sufficiently small,

(6.4) lle = T,@ll_,, < ck**** Y|l yroryy for-1<» <s—1,
and
(6.5) max (1) — (T,@)(1)| < k||l 1)

tey

Define Ty,: (H"°(I x J)n H%(I X J))" - G by Ty, = T; ® T,. We ob-
serve that it follows from the identity

(6.6) I-Ty,=1-Ty+I1-T,-(I-T)®(I—T,)

and from Lemma 6.2, (6.4) and (6.5) that there is a constant ¢ such that, for any
weEH™ YOI xJ)yn HS (I x J))",

(6.7) I(Z = Ty )wlloo < c{A"* Wl 410+ K Wi}

and

(6.8) max [|((1 = T5 )w)(, Ol < c{h Wl 410 + K= W10}
tey

If u and U are the solutions of (1.1) and (3.5), respectively, then we let e = u — U.
We have the following convergence result for method (3.5).
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THEOREM 6.4. Assume that u € (H"™ V(I X J)n H™*Y(I X J))". There is a
constant ¢, independent of u, such that

- 1
max [le(?)] < c{h ™ ull,yry + Kl ges
tEy

+|| Tsug — Upll + 117,80 — Goll 12y + 111,81 — Gl”Lz(J)}'
Proof. Let W = T;_u. Because of (6.8) it is enough to estimate § = W — U.
Note that for any x € 95, we have
> rl
fo fo<W,+AWx+BW+p—f,x>dxdt=0,
where

p=I—- Tu + (I - T,)(Au, + QMQ")u) + (B — QA(Q7), ) — Ty, )u.
By Lemma 6.2, (6.4), and (6.7), there exists a constant ¢ such that

(6.9) lolloo < c{A ™ Null, oy + K+ M1l 501 )
Therefore, 8 satisfies the system

* rl
fot[)<0,+A0x+B0+p,x>dxdt=0 for x € 9,

KoB(0, 1) = (T,g0)(2) — Go(1),
K\6(1, 1) = (Tygl)(t) -Gy — (TyKl(l — Ty)u)(1, 1),
0(x, 0) = (Tsup)(x) — Uy(x).
Hence, it follows from Theorem 5.1, Lemma 6.3, and (6.9) that

" 1 1
max [|0(, )| < e{h" Null,orn + £ ullsa
tEy

+|| Tyto — Uoll + 11,80 — Goll 2oy + 11,81 = Gill 2}

and this implies the theorem. []
We observe that Theorem 6.4 implies that, if we choose U, = Tsuy, Gy = 1,8,
and G, = T,g, — K\(I — Ty)up)(1) in (3.5) and if u is sufficiently smooth, then
max |le(z)|| = O(h™*' + k**1).
tey
In the next section we shall show that if G, and G, are chosen more carefully,
then we can obtain a convergence estimate of the form
(6.10) max [|e(t)|| = O(R™*' + k).
tey
7. Superconvergence. The purpose of this section is to prove certain superconver-
gence results for the method (3.5). In addition to the result mentioned at the end of
Section 6, we shall also show that, if U,, Gy, and G, are all chosen properly, then
we obtain that

M 1/2
r{laX( 2 h(le(x)P + Ie(x.-_l)lz)) = O(h” + k).

tey \i=1
The arguments that we shall use to obtain these superconvergence results are
similar to the ones that were used by Douglas, Dupont, and Wheeler [3] in order to
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prove certain superconvergence results for the standard Galerkin method for
second order parabolic and hyperbolic equations. In the case of parabolic equa-
tions, some of these results were improved by Thomée [12].

We shall first show the estimate (6.10). Let W©® = —( — T,)u and for j =
1,2,... define W & (L¥(I) ® 9N,)" by WU)(x, 0) = 0 and for each x € I

* R ™ R
(7.1) f (WD, )y dt = —f V™D, py forp € N,
0 0
where
(7.2) PP = AWD + BWY,  j=0,1,....

For all integers j > 0, we also let

J
0P =Tu+ 3 WO - U.

i=1
We observe that it follows from (1.1), (3.5), (7.1), and the definition of T, that ¢
satisfies the equation

L D . : .
(7.3) f ! f B9 + 40P + BOD — p, x> dx dt =0 forx € 9.
0 Yo
LEMMA 7.1. Let j be an integer such that 0 < j < s. Then there is a constant ¢ such
that
Il WU)“L’(I;H"(y)) < Cks+"+j+l||“||j,s+1
Jor -1 <v<s—j—1

Proof. The result is obtained by induction on j. By (6.4), the result holds for
J = 0. Assume now that the desired estimate holds for j — 1, where 1 < j < s, and
let » be an integer such that -1 <» < s — j — 1. For a given n € (H"(y))", define
¥ € (H”* ()" by ¢, = n and y(1*) = 0.

We note that there exists a constant ¢, independent of 5, such that

(7.4) Ml 41,y < cllinlll,,y-
For each x € I, we now have

[ . ™ e
[TwOmy dr = [TwO, g, d
0 0

= inf {_fo"<Wt(j), Y — uddt — fo"<pu—1>, Y- pddt

nENG

[ ).

Hence, we obtain from (3.3) and (7.4) that there is a constant ¢ such that

* ; . .
fo WO,y dt < c{(IWPll 2oy + 1097 Pl 2y) 2" * il

75 -
73 + 109l a vyl }-

From (7.1) it follows that

‘ -
Wl 2y < 11097 Pl 2y



INITIAL-BOUNDARY VALUE PROBLEMS 81
and, by (7.2) and the induction hypothesis, we have

1097 PNl gy < €k ||ull 0
for -1 < i < s — j. Hence, the desired result follows from (7.5). [
From Lemma 7.1 we immediately obtain the following superconvergence esti-
mate for the functions W2,

LEMMA 7.2. Let j be an integer such that 0 < j < s. For each integer v > 0, there is
a constant c such that

max | WO, 1), < k™ |lullj4y et
tey

Proof. By (7.1) we have fori > 0

(_é?;)iwm(x, )= _L’_(Py(—a%c—)ipU—‘))(x, 1) dr.

Therefore, there is a constant ¢ such that

(&)

a\
i -1
<c (ax)p

foralli > O and ¢ € y. But from Lemma 7.1 and (7.2) we obtain

9\ o
‘(3)6)‘)

and this implies the lemma. []
We also note that it follows from Lemma 7.1 that, for all integers » > 0, there is
a constant ¢ such that

(7.6) IWOl,0 < k™ *Huljypeer for0<j<s.

The following superconvergence result will now be derived for the method (3.5).

LY(I;H’™(Y))

L) < Ckzs“u“j+i,s+l’
; (v

THEOREM 7.3. Assume that u € (H™**'(I X J) N H***Y(I X J))". Then there is
a constant c, independent of u, such that

max [le(?)]| < C{h’“llull,ﬂ,l + k2 [ullgeer + 1 Tstt — Ul
tEy

1 s—1
+3 |Ta+ 2 KWY4, ) — G, }
i= Jj=1 L2(J)
Proof. Write the error in the form
s—1
e= (I~ Ts )u— Ta( > W<f‘>) + T,0¢D.
j=1

Note that the term (I — 75 )u can be estimated by (6.8), and from Lemma 7.2 we
obtain
s—1

<cmax X [WO; < ck™[[ull, 41
tey j=1

7.7 max

tey

(5w

Jj=1
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In order to estimate 7,0~ ", let

s—1
p=0p""D+(T; - 1)(% + 2 W,‘”)

Jj=1

+ (B - QAQ ) NTs — ])(Tyu + si: WU)).

j=
First, observe that Lemma 7.1 and (7.2) imply that

(7.8) 10~ Plloo < k™ ||ull g1

From (7.1) it follows that, for each integer » > 0, there is a constant ¢ such that
(7.9) WPl < cllully -

Therefore, since W” = —P p"~D, we obtain from Lemma 6.2 that

(7.10) lelloo < e{A"™ Nl 401 + K> Ul ges1)-
Note also that, by the definition of 7 and (7.3), we have

@11 [ [UUT0070), + A(T,0070), + B(T,0070) = o, x) dx di = 0,
o Jo
for all x € 93, . Finally, we observe that 7,6~V satisfies the boundary conditions

s—1

KAT,0°")(0,0) = (T,g)()) + I KWD0, 1) = o)
and
K(T;0¢70)(1, 1) = (T,8))(2) + sg KWL, 1) — Gy(1)
j=1
+ (TYK,(TJs — Du)(1,1) + sil Kl((T(s - I)W(f))(l, 1).
j=1

Since Lemma 6.3 and (7.9) imply that

s—1

(T, k(T — Du)(1, -) + gl K,((Ts — nyw9, -)

L*(J)

(7.12)
< ch ||ull .y g0

it now follows from Theorem 5.1, (7.10), (7.11), and the boundary conditions above
that

max [[( 76~ D)(-, 1)]| < c{h'“uun,ﬂ,, + K2 |ullg gy + | Tsuo — Uyl

tey

+2

i=0

s—1
T+ 3 KWOG,) = G,
j=

L’(J)}
Together with (6.8) and (7.7) this implies the theorem. []
We note that for i = 0, 1 the functions K;u(i, -) = g; are given and hence the
functions K; Wi, -) can be computed from (7.1) and (7.2) (by using the fact that
u satisfies the equation (1.1)). Therefore, if we choose
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s—1
Uy = Tsuy, Gy =T,8, + > Kw9o, -)
j=1

and

s—1

G, = &t 21 K1W(j)(1, )= Kl((l - Ts)“o)(l),

then Theorem 7.3 implies (6.10).

Finally, we want to show the superconvergence property at the knots of the
partition § mentioned in the beginning of this section. Let Z® = —(I — T,)u and
for each integer j > 1 define Z? € (IMy; ® LA(J))" by ZUX0, £) = 0 and for each
teJ

(113)  [AZ + QA(Q),ZP, x> dx = - [ WUV, x> d,
0 0

where

(7.14) YD =ZPD + (B - QA(Q™),)ZD forj=0,1,....

We note that it follows from Lemma 6.1 that Z(? is well-defined for A
sufficiently small. Now let ¢ denote the function

s—1
v =p" + (T, - 1)( > W,w)

j=1
s—1 )
+ (8- QM@ (T~ 1[(1,~ D+ S W)
j=1
Observe that it follows from Lemma 6.2 and (7.6) that, for0 < j <s — 1,
(75 — I)W(j)uo,o < ChrH”W(j)“r'ﬂ,o
< c(hZ(r+l) + k2(3+]))”u”r+s,s+l‘

Hence, since W? = —P, p~V, it follows from Lemma 6.2 and (7.8) that there is a
constant ¢ such that

(7.15) [¥lloo < c(h? + K*)ull,yg51-
Define for each integerj > 0

J
£ = ng(s—l) + 2 AU

i=1

and let 0 = ¢ + Y. Note that it follows from (7.11), (7.13), and (7.14) that
(7.16) [7 [ + 480 + B — 0, x> dx dr = 0,

o Jo
for all x € 93, . In exactly the same way as the corresponding results were proved

for the functions W, we have that if j is an integer such that 0 < j < r, then the
functions Z (/) satisfy the estimates

717y NZDN 2y < ch™ " Yull,y 0 -l<v<r—j-1,

(7.18) @2§I|ZU)(’?’ My < Chzr“u”r-#-l,j+v’ v >0,
X
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and
(7.19) 1ZPllo, < k™ *Mull, 414y » > 0.
First note that, since r, s > 1, it follows from (7.15) and (7.17) that
(7.20) 0 Pllgo < (A + kX)[ull, g s e
Observe also that (7.18) implies that, for0 < j <r — 1,
(7.21) max |(T ZO)(x, 1) < el ZO%, gy < k¥ Null, sy,

(x.1)Ed %

Similarly, it follows from Lemma 7.2 that, for0 < j <s — 1,

(7.22) max  |[(TWO)E, 1) < ck®|jullg
(% i)es Xy
and, by Lemma 6.3, (6.5), and (6.6), we obtain
(723) {nax ,((1 T8 .’)u)(X, t)' C(hzr kzs)”u”r+l,s+l‘
(x.1)Ed Xy

Now write the error e = u — U in the form
s—1 ) r—1 )

(7.24) e=(I1- Ty, )u— 21 TsWO — 2. T,ZD + T£0~Y,
J= J=

By (7.21), (7.22), and (7.23), all terms in this expansion have been estimated at the
knots, except for T,£" V. Let £ = T.£¢~ V. Then ¢ € 93, and, by (7.16) and the
definition of 7., § satisfies the equation

j(;t:j(;‘@; + A§,. + B —w, x>dxdt =0 forxe ‘313,,,
where

r—1
6=V + (T, = 1) 3 (4ZY + BZV).
j=

The relations (6.4), (7.13), and (7.19) imply that

r—1
(T, = 1) 2 (4ZP + BZV)| < c(h*"*D + K2 D) ul, 41,4y
Jj=1

0,0

Hence, from (7.20) we obtain

“""HOO c(th kzs)”u”r+s,r+s'

We also note that ¢ satisfies the initial condition

£(x, 0) = (Tpu)(x) + 2 Z9(x, 0) — Uy(x)

=1
and the boundary conditions

s—1
Ko£(0, 1) = (T,g0)(1) + 2 K,W(0, 1) — Go(1)

Jj=1
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and
s—1
K, 1) = (T,g)0) + T KWL, 1) — G(1) + (T, K (T — Du)(1, 1)
j=1
s—1 r—1 )
+ 3 KT, - HWO)1, 0 + K, 2 (T,Z9)(1, 1).
Jj=1 j=1
Since (7.18) implies
r—1
K 2 (1,Z9)1, *) < ch”|ull 44,
Jj=1 L)

it follows from Theorem 5.1 and (7.12) that there is a constant ¢ such that

Ian ”g(’ t_)” < c{(h2r + kzs)l[ullr+s,r+:

tEeYy

r—1
(7.25) +{|Tyuy + D Z9(-, 0) — U,

Jj=1

+3

i=

s—1
T8 + 21 KW, -) = G,
j=

L¥(J) ]

Finally, note that, since §{ € @ngy, there is a constant ¢, independent of 8, such that

M _ _ 1/2 _
max( 3 A P + 0 ) < maxie, D1

tey \i=1 tEy
Hence, the following superconvergence result follows from (7.21)-(7.25).

THEOREM 7.4. Assume that u € (H™**"*5(I1 X J))". Then there is a constant c,
independent of u, such that

max( S h(le(rn 1) + le(xi ;)|2))V2

tey \i=1

r—1

Tyuy + 2 ZY9(-, 0) = U,

Jj=1
L’(J)}

In the same way as above, we observe that, since u satisfies (1.1), the functions
ZU)(-, 0) can be computed from (7.13) and (7.14). However, this requires that the
matrix Q A(Q "), be computed. We also remark that the regularity assumption in
Theorem 7.4 is stronger than necessary. Weaker conditions can be derived if we are
more careful in obtaining some of the estimates above.

2 2s
< C{(h T KOl s +

1

+ 2

i=

s—1
T8+ 2 KWV, ) - G,
Jj=1
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