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A Stable Finite Element Method for 
Initial-Boundary Value Problems for 

First-Order Hyperbolic Systems 

By Ragnar Winther* 

Abstract. A nonstandard finite element method for initial-boundary value problems for 
first-order hyperbolic systems in one space dimension with general boundary conditions is 
analyzed. The method can be considered as a generalization of the box scheme. We first 
establish a stability result for the method and then derive several error estimates. 

1. Introduction. The purpose of this paper is to study a finite element method for 
the first-order system 

( u,(x, t) + A(x)ux(x, t) + B(x)u(x, t) = f(x, t), 

(1.1) { Kou(O, t) = go(t), K1u(l, t) = gl(t), 
u(x, 0) =uO(x), 

for (x, t) E I x J _ [0, 1] x [0, t*], where t* > 0. 
Here A (x) and B(x) are n X n matrices. We assume that A (x) has n real 

eigenvalues, X1(x) > ?2(x) > * * * > X(x), and that there exist a constant T > 0 
and an integer m, 0 < m < n, such that 

(1.2) Xm+I(X), Xm(X) > To for all x E I. 

Furthermore, we assume that for each x E I there is a nonsingular matrix Q(x) 
such that 

A = QAQ-1, 

where A = diag(XI, X2'... , ), and that there exists a constant T1 such that 

(1.3) jQ(x)j, IQ'1(x)j < T- for allx E I, 

where I * denotes the Euclidean matrix norm. 
If y1(x), y2(x), . . . , y,,(x) are eigenvectors of A(x), corresponding to the eigenval- 

ues XI(x), X2(x), ... ,I X(x), we let E +(x) and E-(x) denote the positive and 
negative eigenspace, respectively; i.e., 

E+(x) = span{y1(x),y2(x), *. ,Ym(X)} 

and 

E-(x) = span{ym+1(x)Ym +2(X), ... I Yn (x) 
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The matrices Ko and K1 in (1.1) are assumed to be independent of t and of 
dimension m x n and (n - m) x n, respectively, and they are assumed to satisfy 
the condition 

(1.4) ker(KO) n E+(O) = {O} and ker(K,) n E(1) = {O}. 

The data in (1.1) are assumed to be given such that uo E (L2(I))n, go E (L2(J))m, 

e1 E (L2(J))n-m, and f E (L2(I X J))n. Throughout this paper we shall also as- 
sume that B E (C(I))nxn and Q, A, A E (C ()(I))nxn. 

Now let v(x, t) = Q -'(x)u(x, t). It then follows from (1.4) that there exists 
matrices S0,0, SO 1,, SO, and S,,I of dimension m x (n-m), m x m, (n-m) x m, 
and (n - m) x (n - m), respectively, such that v satisfies the diagonal system 

[v,(x, t) + A (x)v.(x, t) + B(x)v(x, t) = Q'-(x)f(x, t), 

(1.5) v+ (O, t) = SOOv-(O, t) + SO,go(t) 
v-((1, t) = SOv + (1, t) + SI,I g1(t), 

v(x, 0) =vO(x), 

where vo = Q-u 0,B = Q-'BQ - A(Q-')xQ, and v+ E Cm and v-e Cn-' are 
such that 

(v ) 

It is also well known (see, for example, Thomee [11]) that the system (1.1) has a 
unique solution u E C(O, t*; L2(I)n), under the conditions given above, and that 
there exists a constant c, independent of uo, go, gl, andf, such that 

(1.6) sup IIU(-, t)11L2(I) < C{IIUoIIL2(I) + || gO91L2(J) + || g9l1L2(J) + lfi1L2(IXJ)). 
O< t<t* 

Finite difference methods for general mixed hyperbolic systems of the form (1.1) 
have been intensively studied (see, for example,Kreiss [8] and Gustafsson, Kreiss, 
and Sundstrom [7]), but very little theoretical work has been done in the direction 
of applying finite element methods to such problems. The reason for this is 
probably that the standard Galerkin method does not yield optimal error estimates 
when it is applied to first-order hyperbolic equations (see Dupont [5]) and that this 
method requires special care in order to treat the boundary conditions in (1. 1); (see 
Gunzburger [6]). 

The goal of this paper is to prove a stability result similar to (1.6) for a 
nonstandard finite element method for (1.1) and then use this to derive error 
estimates for the method. The finite element method, which will be precisely 
defined in Section 3, consists of using continuous trial functions and discontinuous 
test functions (both in space and time). The treatment of the boundary conditions 
in this method is straightforward and can be considered as a generalization of the 
so-called box scheme. The box scheme was analyzed for problems of the form (1.5) 
by Thomee [10] and for certain nonlinear problems by Luskin [9]. The method 
considered here is also closely related to a finite element method analyzed by the 
author [13] for the nonlinear Korteweg-de Vries equation and it can (except for the 
treatment of the boundary conditions) be considered as a dual method of the 
(semidiscrete) method studied for one first-order hyperbolic equation by Baker [2]. 
The time-stepping part of our method is closely related to discretization in time by 
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collocation, which was studied for parabolic equations by Douglas and Dupont [4]. 
Some local properties of the method are derived in Section 4 and the stability 

estimate is proved in Section 5. L2-error estimates are given in Section 6 and some 
superconvergence results are derived in Section 7. 

2. Notation. We shall use < *, - > to denote the dot product on C', and I / will 
denote the associated vector and matrix norm. If w E C, then we write 

(w ) 

where w+ E Cm and w- E C -m. Occasionally, we shall also use w + to denote the 
vector (wo ) E Cn, and similarly for w-. In the same way, we write the diagonal 
matrix A in the block form 

A [A+ ? 

For an arbitrary Banach space X, we let 11 * .lx denote the norm on X, and, if 
j > 1 is an integer, then 11 IIx also denotes the norm on Xi. 

For any integer v > 0, H"(I) denotes the Sobolev space of functions on I with v 
derivatives in L2(I), and, if v < 0, then HV(I) is the dual of H-v(I) with respect to 
the inner product on L2(I). For precise definitions we refer to [1]. We shall 
frequently use the notation 

11 I IV= 11 IIH(I) and 11 - 11 = 11 . Ilo 

Also, if vl, V2 > 0 are integers and (p E C ??(I x J), define 

PI V2 (\(v 2 
ik<P1ii2"2 = Lt 2(IXj) 

i=Oj=OL 

We let HvI.v2(I x J) be the completion of C??(I x J) in this norm. 
Throughout this paper, c will denote a generic constant, not necessarily the same 

at different occurrences. 

3. The Finite Element Method. In this section we shall describe our finite element 
method for the equation (1.1). For any integer r > 1, let Pr denote the set of 
polynomials of degree < r. Let A be a family of partitions of I; i.e., if 8 e A, then 
8 = {xi} 0, where 

0 =Xo < XI < .. < XM 1 

We shall use the notation Ii = (xi-1, xi), hi = xi-xi-1 and h = maxI <,M hi. 
For integers r > l and -I < < r - 1, define 

Ss(r, v) = {X 6 C(^)(I)|XI, E Pr, 1 S i < M}, 

where C0-1)(I) denotes the set of piecewise continuous functions on I. Observe that 
the spaces S6(r, v) have the approximation property that, for any integer j, 
v + I < j < r, there is a constant c > 0 such that 

v+ 1 

(3.1) inf E ll(p- Xili < ch'1iIjllj, X E Sfl(rr a) i = O 

for all (p E- Hj(I). 
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Similarly, let F be a family of partitions of J. If y = { o cE r, we let 

Ji =(ti - tj), kj = tj -tj_ and k =max ,< N kj,and, if s > Iland-1I < v <s - 
1, then the spaces sY(s, v) are defined in the same way as above. 

We shall be interested in partitions (6, -y) belonging to a subset Q of A x r. We 
assume that there is a constant T2 > 1 such that, for all (8, -y) E Q, 

(3.2) T21 kh < T2, 1 < i < M, 1 <j S N. 

For the rest of this paper, we let r and s be fixed integers > 1 such that s < r + 1. 
For each (6,-y) E Q, we let 'Dth = S8(r+ 1,0), 9RTy = SY(s + 1,0), 6 = 

S0(r, -1), and DY = SY(s, -1). Observe that it follows from (3.2) that there is a 
constant c > 0 such that, for all X E 941 and 0 S j < r, 

m ~~~~tchkc'IIxI, (3.3) E |IX11H-'(I') < (C-:x: 

and similar inverse properties holds for the other spaces above. 
Adopting a tensor product notation, we define 

9=ITI01L and 

Observe that if U E 9Th0Y, then Uxt E E We shall let Pa,, PT, and P6y be the 
L2-projections onto the spaces 9, %,, and 6 

, respectively. Since the spaces 6z 

and 6_ are discontinuous spaces, it follows that all the projections above are 
completely local. Hence, if a E C(1)(I) is fixed, then since 

aX - P6(aX) = (a - P;a)x + (I - P0)((PJ6a)X) - P,((a - P0a)X) 

it follows by inverse properties that there is a constant c such that, for all X E %8, 

(3.4) laX - P8(ax)II < chlIXII. 
A similar property holds for the projection Py. 

Our finite element method for the equation (1.1) consists of finding U E 9R6Y 
such that 

[ffJ t<U, + AU,,+BU-fJX>dxdt=O, for XEZ%^, 

(3.5) Ko U(O, t) = Go(t), K1U(1, t) = GI(t) 

L U(x, 0) = UO(x). 

Here U0 E 9Th,, Go E 91y, and G1 E 9V-M will be chosen as approximations of 
u0, g0, and gl, respectively, and we always assume that K0UO(0) = Go(0) and 
K1 U0(l) = G1(0). We note that 

dim(9DTh'.) 
= n(Mr + 1)(Ns + 1), dimn(V) = nMrNs, 

and that the initial and boundary conditions in (3.5) represent n(Mr + Ns + 1) 
linear equations. We also observe that the method (3.5) is a time-stepping method 
in the sense that Ulj can be computed from U(., tj_ ), Golj, G1lj, andflj. In fact, 
if we let r = s = 1 and if A and B are independent of x, then the method (3.5) is 
equivalent to the box scheme. 

4. Local Properties. In this section we derive some preliminary results that will be 
needed in Section 5 in order to prove stability of the method. We first prove a local 
property for the method when it is applied to a single equation with a constant 
coefficient. 
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LEMMA 4. 1. Let r and s be integers such that r, s > l and s < r + I and let a =# 0 
be a real number. Assume that U CP 1 0 1 such that 

(4.1) U(x, 0) U(X, 1) 0 

and 

(4.2) 1f (LU + Ux)x dx dt = 0 for X e Pr ? Ps. 

Then U 0. 

Proof. Forj = O1,, . . ., s- 1, define aj E Pr+ I by 

aj (x) = I U(x, t)ti dt. 

Also let a-1 0. It follows from (4.1), (4.2) and integration by parts that, for any 

q C Po 

d aj(x) q(x) dx = UffU (x, t)tj dtq(x) dx 

= -f1f1 U,(x, t)tP dtq(x) dx 

=Jf U(x, t)t'-1 dtq(x) dx 

or 

aj a(x)q(x) dx =j f1aj(x)q(x) dx, 

forj = 0, , . . . , s - 1. Therefore, since a-1 0 O, we obtain that 

(4.3) daj=jaji, j=0,l,...,s-1, 

and 

(4.4) aj EPj +1, j=O,1, .. . ,s -1 

Now let (pi,)r0 c P,+ 1 be such that 
r 

U(x, t) = I p,(t)xi. 
i=o 

Then 
a 

r 

1j(X) = i xi fpi(t)tj dt, 
i=0 

and therefore (4.4) implies that 

(4.5) fpi(t)t' dt = 0, j = O, 1, ... , min(i, s) - 1. 

For each integerj > 0, let Lj(t) be the Legendre polynomial of degreej on [0, 1] 
such that Lj(O) = 1. Note that this implies that Lj(l) = (-1)Y. We now wish to show 
that pi 0 for i = 0, 1, . . . , r. We first note that if i > s, then (4.5) implies that 
pi(t) = 'CXiL(t), where 'Ci is a constant. Since pi(O) = 0, this implies that pi 0. 
Also note that we obtain from (4.5) that 

PS-1(t) = JC3-1 LS-1(t) + DC3.- 1Ls(t), 
for suitable constants 'Ks- and XSC _I But, since Ps 1() = Ps 1(l) = 0 and Lj(l) 
= (-lYLj(O), this implies thatp1 0. 
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We now prove that pi- 0 for 0 < i < s - 1 by induction. Assume io is an 
integer such that O < io s -1 and pi.-0O. From (4.3) and (4.4) we obtain that, 
for 0 < j< s - 1, 

j-i j -1 1 
j I xi lp (t) ti- dt = a- , (i + I)xiJ Pi+ I (t) ti dt, 

i=O i=O 0 

or 

jf 

pi(t)ti dt = a(i + 1) 
pi+I 

(t)ti dt, 

for i = 0, 1, ... ., j- 1. Therefore, sincepi. 0, we have 

JoIPi,,-I(t)1ti dt = , = io- 1, io0..., s-2. 

Also note that (4.5) implies that 

J -(t)tj dt = 0, j = 0, 1,. .., i0-2. 

Hence, there exist constants Xio- , and (io- , such that 

PiO-l(t) = Xio-14-l(t + Cio- Ls(t), 

and as above this implies that pio- I--0. This completes the induction argument 
and hence U- 0. OI 

Let O = (o < * = 1 be a partition of I and let 

(ij =xi- I + jhi for I < i < M, O < j <r. 

For any function (p E C(I), define R8c(p eE DR, by interpolating 9p at the points 
{ti}; i.e., 

(R,6(P)(tij) = P(p(i>) for I < i < M, O < j < r 
We observe that the operator RJ; is defined locally on each subinterval Ii. Hence, 
since asp - R8(a(p) = (a - R8a)cp + (I - R8)((R8a)(p), it follows, from (3.3) and 
standard error estimates for polynomial interpolation, that if a E C(l)(I), then 
there is a constant c, depending on a, such that, for any (p E 'XY, 

(4.6) IlaT - R(aT)II + hllap - R,(aT)ll < chllpll. 

The operator R,J will now be used to diagonalize the system (3.5). Assume that 
U E DV, y is a solution of (3.5) and define V E <DEns by 

(4.7) V= R= Q-1U), 

for all t E J. We note that (4.6) implies that there is a constant c > 1 such that, for 
h sufficiently small, 

(4.8) c- IIV(, t)ll < IIU(-, t)II < cl V(., t)II, 
for all t E J. 

Now observe that (3.5) implies that 
f { 

Q (Q 1-1U)t + A(Q-1U)x + B(Ql-U)} -f X> dx dt = 0, 

for all X E Dq,, where B is defined in Section 1. Hence, it follows from (4.6) that, 
for all x E qnY 

(4.9) f 
I 
<Q{ Vt + AVx + BV + wo}-f, x> dx dt = O, 
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where w0 satisfies 

(4.10) |IZOII OII LXJJ) < C I VIIL2(I xJ), 

for 1 < i < M, 1 < j < N, and some constant c independent of V. 
Define now we - 6Xy by 

ff| <(, P8Q*X> dx dt 
(4.11) t*1I 

-= .-ffJ<Vt + AVx + + wo, (P0 - I)Q*x> dx dt, 

for all X E& NY By (3.3), (3.4), and (4.10), we obtain that (0, is uniquely defined 
for h sufficiently small and there is a constant c such that 

(4.12) II(01IIL2(I,X J) < CII VIIL2(I,xJ), 1 ? i < M, 1 < j S N. 

Also note that it follows from (3.4) that P06 Q maps V onto for h sufficiently 
small. Let (P0Q)-1 denote (P&QI,)- and define f e foy 

r 
by f = (PQ)cPin. 

Then there is a constant c such that, for h sufficiently small, 

(4.13) lifIlL2(I,XJ) < ClIfIIL2(I,xJ), 1 < i < M, 1 < j S N. 

If we let ( = wo + ol, it follows from (4.9) and (4.11) that V satisfies the equation 

Jf|;<V, + AVx + BV + (0-f, P1Q*x> dx dt = 0, 

o o 
for all X E 8 Y, and by (4.10) and (4.12) 

(4.14) II(IIL2(I,X J) < C|| VIIL2(I,xJJ) 1 < i < M, 1 < j < N, 

where the constant c is independent of V. Finally, we note as above that, for h 
sufficiently small, P0Q* maps D'y onto 6s, and hence in this case V solves the 
following discrete analog of (1.5). 

ff A< Vt +A Vx + BV+ w-f,x> dxdt = 0 forx E 6n,, 

(4.15) V+(0, t) = SOO V-(0, t) + S0,1Go(t), 
V-(I, t) = S1,OV+(1, t) + S1,1GI(t), 

V(x, 0) = VO(x), where VO = Rj(Q-1U0). 

The following result is now a consequence of Lemma 4.1. 

LEMMA 4.2. Assume that U E 9",1Zy is a solution of (3.5) and let V be defined by 
(4.7). Then there is a constant c such that, for h sufficiently small and 1 S j S N, 

11 V < ck{I |+ V(_, t + , )112 + kihfII2uXJ)}. 

Proof. Let i and j be fixed integers such that 1 < i < M and 1 < j S N. Define 
V andf in (Pr+ I 0 Ps+ I+)n by 

J(x, t) = V(xi-I + xhi, tj_ + tkj) 
and 

f(x, t) =f(xI1 + xhi, tj -I + tkj), 
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for (x, t) E R2, and let A = A(xi). Then V satisfies the equation 

toto( +hV + k() X- dx dt = O 

for all X E (Pr 0 P))n, where & (V) depends linearly on V and by (3.3) and (4.14) 

11R(V)11L 2(I XI) < CII VIIL 2(I XI). 

Here the constant c is independent of V and kj. Hence, it follows from Lemma 4.1 
and (3.2) that there is a constant c such that, for kj sufficiently small, 

11 12X < C{ || jr( . 0)112 + 11 J(. 1)112 +2 12 } 

or 

11 VII2(I XJ) ? ck1{ || V(, V y _)II + V(t, tj)12 + k1IfII2(Ixj)} 

The desired result now follows by summation from i = 1 to i = M and by (4.13). 

El 

5. L2-Stability. The purpose of this section is to prove an estimate similar to (1.6) 
for the method (3.5). The result below will be obtained by combining the local 
results from the previous section with a generalization of an argument used by 
Thomee [10] in order to prove stability of the box scheme. 

THEOREM 5.1. Assume that U E Dq,.y is a solution of (3.5). Then there is a 
constant c independent of U, such that, for h sufficiently small, 

max I IU(., t)II < ctII UoII + IIGoIIL2(J) + IIGlIIL2(J) + llf110,o). 

Before we prove the result above we note that, since (3.5) is a system of linear 
equations with as many equations as unknowns, the following corollary follows 
directly from Theorem 5.1. 

COROLLARY 5.2. The system (3.5) has a unique solution U E 6'1Z y for h sufficiently 
small. 

Proof of Theorem 5.1. First observe that because of (4.8) it is enough to show that 

(5.1) max 11 V(., t)II < ct V11oll + IIGollL2(J) + IIGlIIL2(J) + ljfjjo}o)~ 
Fey 

for some constant c independent of V, where V is defined by (4.7). 
Now let E E (0, 1) be fixed, where the value of e will be chosen later. Define two 

piecewise constant functions d + and d- on I by 

d (x) =(1 - E)xi-1 + e for x EIi, 

and 

d-(x)=I 1(1- E)xi_ fox0 i 

Observe that 

(5.2) d(xi+) - d (xi-)= d-(xi-) - d-(xi+) = (1 -E)hi. 

Let D be the n x n matrix given by 

D=[ D+ 0 
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where D + = diag(d +, d +, . .. , d +) and D -= diag(d-, d-, . . ., d-) are matrices 
of dimension m x m and (n - m) x (n - m), respectively. We note that 

(5.3) I > D > eI. 
We now prove the estimate (5.1) by energy arguments. For an integerj, 1 S j < N, 
let X E 9 V be given by 

X(x, t) {D(P,5V)(x, t) if t E Jj, 
x otherwise. 

By using X as a test function in (4.15), we obtain 

(5.4) < V + A Vx + B V + w-f D(Ps r V)> dx dt = O. 

First observe that, since for each x E I, V,(x, * ) & 9Y, we have that 

0< , D(P,yV)> dx dt= JdI 

= 1 (11D1/2(p V)( )112 - 1D112(p8v)(, t1)112} 

2 
Also note that, by (4.13), (4.14), and (5.3), we obtain 

f ' f <BV + w-f, D(P0, YV)> dx dt C{IIVI|L2(IXJj) + IIfIIL2(IxJi)) 

where the constant c is independent of V. Let A be the piecewise constant matrix 
on I given by A(x) = A(xi) for x E Ii. Then there is a constant c such that 

ft' f1<(A - A)VX, D(P6,yV)> dx dt 
tJ-l ~ ~ ~ ~ 2( X?ClV1 (X 

< ch|l VxIIL,)II VIIL2(IXJ0) L j) 

where we have used the inverse property (3.3). Finally, we obtain from (5.2) that, 
for any t E j, 

ft I 
<A Vx, Df(P8,6 V)> dx dt =< f K DA(P V), Py V> dx dt 

= l t(' , {<DA(PYV), P V>(xi-, t) - <DA(P V), P V>(xj_ +, t)} dt 
2j_ i= 1 

> -f {(1 -e)I(A+(1))112(P V)+ (1, t)I2 - eI(A+(x1))I12(P V)+ (0, t)12 

+ (1- e)I(-A-(x))112(p V)1(0 t)j2 - eI(-A(1))112(P v) (1, t)12} dt 

M-1 

-c' hilpy V(Xi, t) 12 dt. 
t,-l i= 

Since there is a constant c such that 
M-1 M-1 

tj E hiPy V(xi, t)12 dt <i> hif I V(x,, t)I2dt 

6 C|I VII 2(I XJ) 
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it therefore follows from (5.4) and the estimates above that there is a constant c 

such that 

jjD1/2(p0V)(- tj)112 - jD112(p8 V)(., tj)II2 

+ ( 1 - e) {f|l|(A ( 1))'1/2(py V) ( 1, * )I|| 2(J.) 

+|(1A-(O))1p2(P V) (0, *)II2(J)} 

(5.5) {( (A/ L2,Jj( 

+ II(-A-(l))112(Py V) (1, *)1122(J)} 

? C{||IVIIV(AIXJ})I + 2If IVL3(,XJ2)} 

In order to obtain control over the full L2-norm of V(-, tj), we need to apply one 
other test function in (4.15). First let I be the n X n matrix given by 

where I+ and I- are the identity matrices of dimension m x m and (n - m) X 

(n - m), respectively, and let A = IA. By using the function 

X(x, t) = fiDVxt(x t) if t 
E Jj, 

O otherwise, 

as a test function in (4.15), we obtain 

(5.6) <Vt + AVx + BV + of, IDVxt> dx dt =0. 

We observe that 

f f <A VX, IDVx,> dx dt = I (AD )I/2VX2 dt 

= jtII(AD)1/2Vx( )j12- j(AD)"2v(, 
Vx_i) 

I2}- 

Also, by (3.3), (4.13), (4.14), and (5.3), 

fi fKt<B V + X-f, ID Vxt> dx dt < ch12(II V||L(XXJ ) + I fIIL2(IXJ)) 

where the constant c is independent of V. In the same way as above, we also obtain 
from (5.2) that there is a constant c such that, for any t E J& 

f<vt~ IDVX,> dx = f 
I d ,(t(D+)1/2V+(x, t)12 -_ (D)112JV(x, t)12) dx 

4 {(1 - c)I Vt+(1 t)12 - eI Vt+(0, t)12 

+ (1 - )jV(?' t)12 - eI V(I, t)12} 
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From (5.6) and the estimates above, we derive that there is a constant c such that 

II(AD )1/2V ( 
)I II(AD)112v(., j_I)II2 

+ (1 - o){II Vtj(1 -)II (.j) + 11V(O, )IIL2(LJ)} 

(7)-e{IJVT(O )II L2(J) + 11Vt(l, )Vt L2(Jj)} 

? ch (|| VIILj(IXJ) + IIfIIL2(IXJJ)). 

Define now a new norm, 1*% on cD1I, by 

III W11= 
2 

lD 1/2(p6 W)112 + h211(AD)1/2 WXI2. 

We note that it follows from (3.3) and (5.3) that, for h sufficiently small, I I I is 
uniformly equivalent to 11 * 11 on (Xsn. If we add (5.5) and h2 times (5.7) and use the 
boundary conditions in (4.15), then we obtain, by choosing e sufficiently small, 
e = E(S00, S1,0, A), that 

IIV(., tj)1112 _ III V(., tj_l)III2 

S c{|I Vi|L2(IXJ) + IIGOIIL2(J,) + 11GII1L2(JJ) + 11fll12(Ix.2)}, 

where the constant c is independent of V. Hence, it follows from Lemma 4.2 that 
there is a constant c such that, for h sufficiently small, 

III V(_, tj) 11 1 < (I + Ckj)III V(., tj_I)IIl2 

(5.8) + c{ || GOII L2(j) + 11G1l| 2(JJ) + 11 fIi2(Ixj)}- 

Since (5.8) holds for j = 1, 2, ... , N, (5.1) follows by the discrete analog of 
Gronwall's lemma. [1 

6. L2-Convergence. In this section we shall use Theorem 5.1 to prove L2-error 
estimates for the method (3.5). These estimates will be derived under certain 
smoothness assumptions on the solution u of (1.1), and hence the data in (1.1) has 
to satisfy certain compatibility conditions at t = 0. We shall, particularly, in the 
rest of this paper assume that Kouo(O) = go(O) and K1uo(l) = gl(O) and that 
Q, A, A E (C (r+ l)(I))n x n. 

LEMMA 6.1. Assume that W E 9tn6 is such that W(O) = 0 and 

J <AWX + QA(Q-')xW, X> dx = 0, 

for all X E PL;. Then, for h sufficiently small, W 0. 

PROOF. Since A = Q A Q -1, we have, for any X E 6X, that 

f<A(Q'W)Xl Q*X> dx = 0. 

Therefore, since (Q 1W)+(0) = 0, there is a constant c > 0 such that 

' II(Q-lW)+ l < < f A(Q -1W)X, (Q -1W) > dx 
c 

x~~~~~~~~~~~~i 

inf <A(Q1W)x, (Q1W)j - Q*X> dx 

S IIA(Q-1W)xll inf II(Q-1W)i - Q*xII 
x E- cV8 

x 
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Note that, by (1.3), (3.1), and (3.3), there is a constant c such that 

inf II(Q- W)x - Q*xII = inf IIQ*((Q*)l(QlW)X - x)II 

M 

< ch hi r-lI II(Q*)- I(Q -1W)X+ I r(, 
i = 1 

< ch 11 Wll1 

Hence, we have 

II(Q 1W)+ 1121 < chllI W112 

A similar result holds for (Q 1W)-, and therefore there is a constant c, independent 
of W, such that 

11 Q-1WII < chIIQ-1WII1. 

This implies the desired result. EJ 
Define T,: (H '(I))' > 6XD by (T8w)(O) = w(O) and 

f<A(wx -(T8w)x) + QA(Q-l)x(w - T85w), X> dx = 0, 

for X E 6n. We note that it follows from Lemma 6.1 that T8w E ' is well- 
defined for h sufficiently small. 

For any integer v > 0, let H'(6) denote the piecewise Sobolev space given by 

HP(S) = {w E L2(I)Iwl, E H (I,), 1 < i < M 

and let I II*,, be the associated norm; i.e., 

M 

If v < 0 is an integer, then we define H'(6) by duality with respect to the inner 
product on L2(I); i.e., H'(6) is the completion of L2(I) in the norm 

flwT dx 
IlWIII w .,l sup IITII1 , 

In the same way as above we define the spaces H'(y), with norms 
consisting of functions defined on J. We observe that if w E H'(6) for some v < 0, 
then w E H'(I) and IIwIL,, < IIIwII1,,6. 

The following error estimate for the "projection" T8 now follows by a standard 
duality argument. 

LEMMA 6.2. There is a constant c such that, if h is sufficiently small and 
w E (H r+(I ))n, 

lllw - T^willl-,, < Ch r++lIIWIIr+l for-1 v I < r- 1. 

Proof. Let = w - Tw. It follows from the definition of T8w that, for any 

(6.1) Jo <A(Q ()x, Q*X> dx = 0. 
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Assume that v is an integer such that 0 < v < r - 1 and let -1 E (H'(8))'. Define 
4 e (H1 (86))n by 

(A4')X e 71 and 4(1) = 0. 

Note that there is a constant c, independent of q, such that 

(6.2) III4'II+8,8 < c<qi,,. 
From (3.1) and (6.1), we now obtain that 

f1Q -% 71> dx = I<Q - (A4)x> dx 

= infj <A(Q 1) Q*X-4> dx 

< chP+1II(Q-1t)xIIIIIAIII,+j',. 

Hence, it follows from (1.3) and (6.2) that 

(6.3) <114111 ? ch"+111I11I forO < v < r -1. 

The proof will be completed by showing the desired result for v = -1. 
By (1.3), (3.1), and (6.1), we obtain that there is a constant c > 0 such that 

1Q1W ii2 < I (Q + > dx 

f I <?( )(Q-1w)+ - Q*xl> dx 
X I E '%V O 

+ inf <A(Q-1')x, Q*X2 - (Q-1(T6w))+> dx 

< ch rgI 1111 1WIIr+ 1 + 111T,6Wlll1r,8 } 8 

Observe that if we choose X e 5 such that 
r 

I h'Illw - XIIIj, < ch rII Wllr' 
j=O 

then it follows from (3.3) that 

III T8WIIIr,8 < IIIXIIIr,8 + III T8W - XIIIr,8 

< IlixIIIrO + ch-(r -l) 1lllw - Xlii1 + 1141) 

< C{lIWIlr + h(r-l)1II1}. 

Hence, it follows from the above that there is a constant c such that 

II(Q 1) 112 < CIIjIIj(hIIWIIr+ + hIjjjI1). 
By a similar argument we obtain an analog estimate for (Q-1y and therefore there 
is a constant c such that 

II Q-%II2 < Cjjfjjl(hrIIWII'r+ + hljljjj). 

Note also that it follows from (6.3) that 

11cl, = II QQ %II1 < C(II Q -%ll1 + 11411) < COIIQ -1Xll1 + hjjljjj). 
Hence, there is a constant c such that 

11r111 < ch r i iW li r+ 11 

for h sufficiently small. Together with (6.3) this implies the desired result. [ 
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The following superconvergence result for the operator T, now follows directly 
from the result above. 

LEMMA 6.3. There is a constant c such that, if h is sufficiently small and 
w E (Hr+l(I))n, 

maxlw(x-) - (Tw)(x-)j < ch2r 11w11r+1. 
kES 

PROOF. For a fixed x- E 6, define G(x-, ) (L2(I))n by 

G(x-, x)j= ( >(x))-l if x < x-, 
0 otherwise. 

Observe that for any 4 E (H 1(J))n, such that 4(0) = 0, we have 

x= <A+x, G(x-, x)> dx. 

Therefore, since G(x-, *) E Hr- 1(6), it follows from Lemma 6.2 that 

Iw(x) - (T86w)(x-)l = f - <A(wx- (Tw)x), G(x-, x)> dx 

< ch2r Iw11r+1. El 

Similar to the operator T8, define T 1 (Hl(J))n __ DV, by (T,q)(0) = T(0) and 

< < - (Tp),, A> dt = 0 forA E n 

It is easy to see that Typg E 'g is well-defined, and, by using arguments similar to 
the ones given in the proofs of Lemmas 6.2 and 6.3, we obtain that there is a 
constant c such that, for k sufficiently small, 

(6.4) II<m- TypIII_,y ? ckS+v+lIkpIIH +I(J) for -1 < < s - 1, 

and 

(6.5) max Ip(t )-( T)(t)I < ck2'jjIpjjHs+I(j). 
t E- -Y 

Define Th: (H 1,o(I x J) n H0 1(I X J))n -> Y by T8, = T 0 Ty We ob- 
serve that it follows from the identity 

(6.6) I- T8 =I- Ti + I- Ty-(I- Ti) ? (I- TY) 

and from Lemma 6.2, (6.4) and (6.5) that there is a constant c such that, for any 
w E (H r + 1(i x J) n H Is+ I(I X J)) n 

(6.7) 11(I - T c{hr+lIIwIIr+i,o + ks+lllWIII s+i} 

and 

(6.8) max ii((I - T ,)w)(., t)II < c{hr+lIIwIIr+io + 
k25jjwjj,.+1}. tEy( 

If u and U are the solutions of (1.1) and (3.5), respectively, then we let e = u - U. 
We have the following convergence result for method (3.5). 
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THEOREM 6.4. Assume that u E (Hr+l 1(I x J) n H15s+'(I X J))n. There is a 
constant c, independent of u, such that 

max lle(t)II < c{h'1IIuII r+1,I + ks+ 1IIuIIj,+1 

+IIT8uo- Uoll + IITygo - GOIIL2(J) + IITYg1 - GlIIL2(J)) 

Proof. Let W = T,6Yu. Because of (6.8) it is enough to estimate 9 = W - U. 

Note that for any X E Y we have 

ffJ <W + AW, + BW + p -f, x> dx dt = 0, 

where 

p = (I - T1)u, + (I - Ty)(Aux + QA(Q-')xu) + (B - QA(Q-) - T8I )u. 

By Lemma 6.2, (6.4), and (6.7), there exists a constant c such that 

(6.9) IIpIIO,O < c{hr+ IIuIl r+l,l + ks+ 1IIuII1j,+1}. 
Therefore, 9 satisfies the system 

t* I1L 

f0fK<Ot + AOx + BO + p, X> dx dt = 0 for X E ' Y, 

KO(O, t) = (Tygo)(t)- Go(t)- 

K10(1, t) = (TYg1)(t) - GI(t) - 
(TYKI(I - T8)u)(1, t), 

#(x, 0) = (Tsuo)(x) - U0(x). 

Hence, it follows from Theorem 5.1, Lemma 6.3, and (6.9) that 

maxII9(~, t)II < c{hr+lIIuIlr+l,l 
+ 

ks+lIIuIIj,,+i tE y 

+IIuTuo - UoII + IITYgo - GOIIL2(J) + IITYgI - GlIIL2(J)), 

and this implies the theorem. Oll 

We observe that Theorem 6.4 implies that, if we choose U0 = T uo, GO = TYgO 
and G1 = Tyg1 - K1((I - 1^)uo)(1) in (3.5) and if u is sufficiently smooth, then 

maxlle(t)II = O(hr+l + ks+l). 

In the next section we shall show that if GO and G1 are chosen more carefully, 

then we can obtain a convergence estimate of the form 

(6.10) max IIe(t)II = O(hr+ + k2s). 
tE y 

7. Superconvergence. The purpose of this section is to prove certain superconver- 

gence results for the method (3.5). In addition to the result mentioned at the end of 

Section 6, we shall also show that, if U0, Go, and G1 are all chosen properly, then 

we obtain that 

M 1/2 
max hi(Ie(xi)12 + Ie(xi-i)I2) = O(h2r + k2s). 

tE=-y i 

The arguments that we shall use to obtain these superconvergence results are 

similar to the ones that were used by Douglas, Dupont, and Wheeler [3] in order to 
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prove certain superconvergence results for the standard Galerkin method for 
second order parabolic and hyperbolic equations. In the case of parabolic equa- 
tions, some of these results were improved by Thomee [12]. 

We shall first show the estimate (6.10). Let W()= -(I - TY)u and for j = 

1, 2,... define W(i) E (L2(I) 0 6XTY)n by W(j)(x, 0) = 0 and for each x E I 

(7.1) f KWt() [t> dt '=-f<p(i<P ), a> for ,E Y, 

where 

(7.2) p(i) = AW(j) + BW(), j= 0, .... 

For all integersj > 0, we also let 

(J) = T u + 2 WO')- U. y 
i=l1 

We observe that it follows from (1.1), (3.5), (7.1), and the definition of T, that 0(J) 
satisfies the equation 

(7.3) f Jf <St() + AS(i) + B() - p(j) X> dx dt = 0 for X E DU 

LEMMA 7.1. Let j be an integer such that 0 < j < s. Then there is a constant c such 
that 

|| W"I1 L2(I;H--(y)) S cks+v+ +lIIulIjs+l 

for -l v < s-j - 1. 

Proof. The result is obtained by induction on j. By (6.4), the result holds for 
j = 0. Assume now that the desired estimate holds forj - 1, where 1 < j < s, and 
let v be an integer such that -1 < v < s - j - 1. For a given q E (H'(y))n, define 
4 E (H'+ l(y))n by At = q and 4,(t*) = 0. 

We note that there exists a constant c, independent of q, such that 

(7.4) 1114111 1^+l,-y < Ci711110 1,r- 

For each x E I, we now have 

< W(j), > dt = J W(j), At> dt 

< 
Wti), dftp(h1,4> 

t} 
inf - < ),- dtA <pUjl A>, dt 
Eu E IX.O 

+ <p(j- 1, -+>dt} 
Hence, we obtain from (3.3) and (7.4) that there is a constant c such that 

f* <KW(j), Xi> dt < c{(II W(j)IIL2(J) + IP(j IIL2(J))h IIIqIII ,Y 
(7.5) + IIIp(j- I)III-(P+ 1),yIjjinll , y}. 

From (7.1) it follows that 

|| WV)1ii L2(J) < IIP(j )IIL2(J) 
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and, by (7.2) and the induction hypothesis, we have 

11P 11L2(I;H-'(y)) < cksijl uIlI,s+1 
for -1 < i < s -j. Hence, the desired result follows from (7.5). EO 

From Lemma 7.1 we immediately obtain the following superconvergence esti- 
mate for the functions W(j). 

LEMMA 7.2. Let j be an integer such that 0 < j < s. For each integer v > 0, there is 
a constant c such that 

max W(j)( , t ) II , < ck2s IUIIj+, s+i. 

Proof. By (7.1) we have for i > 0 

(a ) vi(X, t) = - J(PY(a) 1)(x, t) dt. 

Therefore, there is a constant c such that 

|(ax) t) < c|| ax ) P 2(I;-() ?Lc 

for all i > 0 and t E y. But from Lemma 7.1 and (7.2) we obtain 

11( 1))II2 < ck2 |IuIIj+i,s+1 

and this implies the lemma. [ 
We also note that it follows from Lemma 7.1 that, for all integers v > 0, there is 

a constant c such that 

(7.6) 11 Wj)ll,,,o < cks+j+1l ull+,,s+ I for 0 < j < s. 

The following superconvergence result will now be derived for the method (3.5). 

THEOREM 7.3. Assume that u E (Hr+s,l(I X J) n Hss+l(I x J))n. Then there is 
a constant c, independent of u, such that 

maxlle(t)0 < c{hr+ 1 UI+,1r + k6uIIuII55+1 + II8uo - Uo01 

1s-I 

+ E Tygi + 2 KiW(j)(i, )Gi 
i=O j=1 2(J) 

Proof. Write the error in the form 

e = (I- T8,)u- 
T W(j)) + T 09 I)* 

Note that the term (I - T8y)u can be estimated by (6.8), and from Lemma 7.2 we 
obtain 

(s-I 
s-I2sjjSS, (7.7) max |8 E W(?) < c max W(j) I < ck2uss+. 

tEEy j=1 / ey j=1 
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In order to estimate T,,O(s- 1), let 

io io(TSs- I) a ) 

+ (B - QA(Q )x)(Ts I)(TYu + Y W(u) 

First, observe that Lemma 7.1 and (7.2) imply that 

(7.8) II P(S - 1) 1o 0, l< ck25 s u lls s + 

From (7.1) it follows that, for each integer z > 0, there is a constant c such that 

(7.9) 11 W(i)ll ,, < cll uII ,+j,l 
Therefore, since W/() = _p'p(i - 1), we obtain from Lemma 6.2 that 

(7.10) 11PI11O, < C{hr+lIIUIIr+s,l + k2sIIUIISS+i}. 

Note also that, by the definition of T8 and (7.3), we have 

(7.11) f f<(T (S-) + + B(TpO( ,-X))- X> dx dt = 0, 
o o 

for all x E . Finally, we observe that T 1) satisfies the boundary conditions 
s-1 

K0(T89( -1))(0, t) = (Tygo)(t) + 2 KOW(')(0, t) -GO(t) 
j=1 

and 
s-i 

K1( T80(S-01)(1, t) = ( T tg)(') + , K1 W(V)(1, t) -G(t) 
j=l 

s-1 

Ty TK,( T - I)U) ( 1 t) + Ya K, (( T -I) W(j)) , t). 
j=1 

Since Lemma 6.3 and (7.9) imply that 
s-i 

(TYKI(T8 - I)u)(I ) + - K ((T8-I)W(j))(1, .) 
(7.12) j=1 

L2(J) 

< ch 2r( UIIr+s,1 

it now follows from Theorem 5.1, (7.10), (7.1 1), and the boundary conditions above 
that 

max 
II(7T78(s ))(I, t)I< C h+ lIIUIlr+sl + k2sIIuII5ss+j + 11 T8uo 

- 
Uoll 

1s-i 

+ Ty g1 + E K,W(')(i, Gi- 

i=O j=1 L2(J) 

Together with (6.8) and (7.7) this implies the theorem. [1 
We note that for i = 0, 1 the functions Kiu(i, *) = g, are given and hence the 

functions Ki W(j)(i, * ) can be computed from (7.1) and (7.2) (by using the fact that 
u satisfies the equation (1.1)). Therefore, if we choose 
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s-I 

Uo = T6uo, Go = Tygo + E KOW(')(0 ) 
j=1 

and 
s-i 

GI= Tygl + E K1W(j)(l, ) A- I-TOu0)(l), 
j=l 

then Theorem 7.3 implies (6. 10). 
Finally, we want to show the superconvergence property at the knots of the 

partition 8 mentioned in the beginning of this section. Let Z(0) = -(I - T6)u and 
for each integerj > 1 define Z(j) E (9kb 0 L2(J))n by Z(j)(0, t) = 0 and for each 
t eJ 

(7.13) f<AZ(j) + QA(Q-1),Z(j), X> dx = <f4(i ,> dx, 

where 

(7.14) 4(j) = Z(j) + (B - QA(Q-l)x)Z(j) forj = 0, 1. 

We note that it follows from Lemma 6.1 that Z ( j) is well-defined for h 
sufficiently small. Now let 4, denote the function 

4 = p(S- I) + ( -I)(iE W(j)) 

+ (B - QA(Q-1)X)(T8 - I)((Tr - I)u + E W(j)) 

Observe that it follows from Lemma 6.2 and (7.6) that, for 0 < j < s -1, 

1I(Ts - I)wf"ii0,0 < chhr+11 W(j)II rl+ 1,0 

< C(h2(r +) + k2(s + ) )1U1r+sI 

Hence, since W(j) = _ p U_ 1), it follows from Lemma 6.2 and (7.8) that there is a 
constant c such that 

(7.15) II,IIQ,O < c(h2r + k2s)IIUIIr+ss+I. 
Define for each integerj > 0 

(() = T 9(S-1) + Z(i) 
i=lI 

and let w(i) = 4, + VP-). Note that it follows from (7.11), (7.13), and (7.14) that 

(7.16) f <f'(Kt) + A() + B(j) - W(j), X> dx dt = 0, 

for all X E N C In exactly the same way as the corresponding results were proved 
for the functions W(j), we have that if j is an integer such that 0 < j < r, then the 
functions Z(j) satisfy the estimates 

(7.17) IIZj)1IL2(J;H '(8)) < ch r ++IIUIIr+lj, -1 < V < r-j-1, 

(7.18) max IIZ(j)(x, .)IIH(J) < ch2rI UIlr+lij+,, v > 0, 
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and 

(7.19) IIZ('illo,, < Ch r+j+ lUllIIr+l,j+,, V > 0. 

First note that, since r, s > 1, it follows from (7.15) and (7.17) that 

(7.20) 1I(r-1)ll,o 0 < C(h2r + k2s)IIUIlr+s,r+s 

Observe also that (7.18) implies that, for 0 < j < r - 1, 

(7.21) max |(TyZ(j))(x, t)| < cIIZ(j)(x, *)IIH'(J) S ch2rIl Ullr+l,r. 
(JW, t)eC xy 

Similarly, it follows from Lemma 7.2 that, for 0 < j < s - 1, 

(7.22) max I( Ts 6W()(x, 01 < ck'jjujjs s+1, 
(JW, t) E xy 

and, by Lemma 6.3, (6.5), and (6.6), we obtain 

(7.23) max 1((I - T, Y)u)(x, t)l < c(h2r + k2)IIUIlr+i1s+i1 
(X, K)e6xy 

Now write the error e = u - U in the form 

s-i r-1 

(7.24) e = (I - T - 2 - + Tyt(r-l). 
j=1 j=1 

By (7.21), (7.22), and (7.23), all terms in this expansion have been estimated at the 
knots, except for Tyt(r-1) Let ( = TyV(r 1) Then 8 e 2DL and, by (7.16) and the 
definition of Ty, t satisfies the equation 

f0f <K,t+A,x + B- w,X>dxddt=0 forXE X S 

where 

+ (T_ 
Ir-I - ~~(r-l) + (T - I)E (AZ (I) + BZ(i)). 

j=1 

The relations (6.4), (7.13), and (7.19) imply that 

r-I1 

(T, - I) E (AZ(j) + BZ(j)) < C(h2(r+ I) + k2(S + l))IIUIIr+i+s 
j=1 10,0 

Hence, from (7.20) we obtain 

IIWIIO,O < c(h2r + k2s)IIUIlr+s,r+s. 

We also note that ( satisfies the initial condition 
r-1 

4(x, 0) = (T8uo)(x) + E Z(')(x, 0) - U0(x) 
j=1 

and the boundary conditions 
s-i 

Ko0(O, t) = (Tygo)(t) + E KOW(j)(0, t) - GO(t) 
j=1 
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and 
s-1 

K10(1, t) = (TYg1)(t) + E K1VW(i)(1, t) - G1(t) + (TYKI(Ts - I)u)(1, t) 
j=l 

s-I r-I 

+ E K#(T;- I) W(j))(1, t) + K, Y4 (TYZ(j))(1, t). 
j=1 j=1 

Since (7.18) implies 
r-I1 

K1 E (T Z(i))(1, < ch 2rl? 
j = I ~~~L2(j) 

it follows from Theorem 5.1 and (7.12) that there is a constant c such that 

max jj4(, t)1I < c (h2r + k2s)IIUIIr+s,r+s 
tE-y 

(7.25) + T6U0 + E Z(j)( - U0 
j=1 

1 s-i 
+ E |Tygi + E K, W(;)(i, )-G| 

i=O j= 1 L2(J) 

Finally, note that, since G E '1?.?, there is a constant c, independent of 5, such that 

MIX 1 
1/2 

max hj(j~(x,, tJ + ' t)J) ? cmaxII~(., 0)II. 

Hence, the following superconvergence result follows from (7.21)-(7.25). 

THEOREM 7.4. Assume that u E (Hr+s,r+s(I x J))'. Then there is a constant c, 
independent of u, such that 

m 1/2 

max 2 hi(le(xi, t)j2 + le(xi-1, t)12) 
tE=-y i=1 

r- 1 

< C{(h2+ k2s)IIUIIr+s,r+s +| T8uT + E Z(j)(., 0) - UO 
j=1 

1s-i 
+ | Tyg1 + E KiW(')(i, Gi- 

i=O j=1 LL2(J) 

In the same way as above, we observe that, since u satisfies (1.1), the functions 
Z(j)(-, 0) can be computed from (7.13) and (7.14). However, this requires that the 
matrix QA(Q-'), be computed. We also remark that the regularity assumption in 
Theorem 7.4 is stronger than necessary. Weaker conditions can be derived if we are 
more careful in obtaining some of the estimates above. 
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